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Abstract— We extend the Turret Defense Differential Game
by considering the possibility for the mobile Attacker to
retreat to a particular region of the state space in lieu of
engaging the Turret. In this case, the Turret cooperates with
the Attacker by escorting the Attacker to the retreat surface,
thereby minimizing its cost. Along the retreat trajectory, the
cost associated with the Value of the Game of Engagement must
be greater than the cost associated with retreating. We refer
to this scenario as Optimal Constrained Retreat, wherein the
aforementioned requirement is imposed as a path constraint.
The optimality conditions are developed herein. We specify a
boundary value problem with fixed initial state and compute
the optimal trajectory numerically via backwards shooting. The
corresponding trajectory contains a constrained arc wherein
the path constraint associated with the Game of Engagement
becomes active.

I. INTRODUCTION

The Turret Defense Differential Game (TDDG) is played
between a mobile Attacker, moving with simple motion,
and an immobile Turret with bounded turn rate. In the
Game, the Attacker seeks to collide with the Turret while
avoiding the gaze of the Turret; the Turret seeks to impose
a large cost on the Attacker’s approach by aiming at it.
The Attacker controls its instantaneous heading while the
Turret controls its instantaneous turn rate. In this paper, we
consider a scenario which layers on a higher-level decision
for each player. Here, the Attacker must decide between
engaging the Turret in a collision course or moving to a
pre-determined retreat boundary, and the Turret must decide
between activating its defenses or escorting the Attacker to
the retreat boundary. In some differential games, such as
pursuit-evasion, the higher-level decision involves determin-
ing task assignments resulting in smaller instances of the
original game [1]. In contrast, the higher-level decision (to
engage or retreat) yields either a differential game wherein
the two players oppose one another, or an optimal control
problem wherein the players actually cooperate [2]. We thus
refer to the TDDG as the Game of Engagement (GoE).

The scenario we consider has application to defense
against risk-conscious attackers (e.g. vehicles, or otherwise
expensive munitions) by a stationary platform. The Turret
itself may represent a weapons platform of some kind or
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even a surveillance asset seeking to steer its sensor to
maximize observation of the incoming Attacker. Generally
speaking, the methodology itself is important because real-
world conflicts of warfare rarely entail a single well-defined
objective. Therefore, the ability to systematically consider
multiple layers of decision-making and control available to
both sides is highly desirable.

In [3], the TDDG was introduced and solved (i.e. the
state space was filled with equilibrium trajectories) and
three singular surfaces were analyzed: the Defender (Turret)
Universal Surface (α = 0), the Defender Dispersal Surface
(α = π), and the Attacker Dispersal Surface wherein the
Attacker chooses from a direct and indirect route to ter-
mination. There, the Game terminated when the Attacker
came within some capture distance of the Turret and the
players’ utilities were zero-sum. In [2] a simpler game of
a mobile Attacker and stationary Defender (with no turn
dynamics) was used to illustrate a framework for engage or
retreat scenarios in which there is a higher level decision to
“play” the game, resulting in interception of the Defender,
or to retreat. This meta-game is made interesting when
the Defender is rewarded if the Attacker retreats and the
Attacker is penalized for retreating. We solve this problem
by breaking it into two subproblems: the GoE and optimal
constrained retreat (OCR). Using this method, it was shown
that switching intents (from retreat to engage, or vice versa)
within the engage or retreat game does not yield a better
utility [2]. To ensure that switching to engagement does not
yield a better utility while retreating, a path constraint is
imposed.

In previous work [3], the TDDG (GoE) was solved, but its
solution is numerical. In this work, we consider the TDDG in
the context of the engage or retreat framework and focus on
OCR. Thus, in order to impose the path constraint, we must
perform a numerical interpolation of the GoE solution along
the OCR trajectory. The main contributions of this paper are
(1) a numerical interpolation scheme of the TDDG’s solution
(2) derivation of the first order necessary conditions for
optimality for the OCR problem, (3) specification of the BVP
for when the constraint becomes active along the trajectory,
and (4) a process for solving the BVP. Section II contains a
formal description of the OCR problem. Section III contains
the derivation of the first order necessary conditions for
optimality, specification of the BVP, and special consid-
erations for the Turret’s turn control. Section IV contains
the simulation results for a particular initial condition, and
Section V concludes the paper with some remarks on future
work.
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Fig. 1. Coordinate system [4]

II. PROBLEM DESCRIPTION

Given a stationary Turret with bounded turn rate and
a mobile Attacker, moving with simple motion, we seek
a trajectory which moves the system state to the retreat
surface, while minimizing cost, subject to a path constraint.
The coordinate system is depicted in Fig. 1 and we define
the Turret’s position to be the origin of the (x, y)-plane.
The dynamics of the system are a modified version of the
dynamics presented in [3] wherein the natural parameters are
consolidated into relative turret effectiveness, ρ, and relative
time cost,

f(x,u, t) = ẋ =

ḋα̇
β̇

 =

 cosψ
ω − 1

d sinψ
1
d sinψ

 , ω ∈ [−ρ, ρ] ,

(1)
where the Attacker controls ψ, its instantaneous heading
angle relative to the line-of-sight from the Turret, and the
Turret controls ω, its turn-rate [4].

We define the following boundary conditions,

φ(x(t0),x(tf )) =


d(t0) cosβ(t0) + 5
d(t0) sinβ(t0)− 20
α(t0)− β(t0) + π

2
d(tf ) sinβ(tf )− yR

 = 0 (2)

with t0 = 0 and tf free. Note that in the natural (x, y)-plane,
the first two constraints can be expressed as x(0) = −5
and y(0) = 20, respectively, while the last can be expressed
y(tf ) = yR. Thus, the retreat region, in this case is y ≤ yR.
Here, we set yR = −20. The initial α constraint stipulates
that the Turret’s initial global look angle is π

2 (i.e. along the
positive y axis).

The cost functional is also slightly modified from that
of [3],

J =

∫ tf

t0

[
θ

(
1

2
(1 + cosα)

)
+ c

]
dt+Φ (x(tf ), tf ) , (3)

where θ ∈ [0, 1] is an additional Turret control representing
some kind of rate of fire. The terminal Value function,

Φ (x(tf ), tf ) = P, (4)

where P > 0 is a constant, penalizes the Attacker for
retreating instead of engaging. The results herein are based

on setting ρ = 0.05, c = 0.01, and P = 8. The settings
for ρ and c match the settings used in [3]. For the optimal
constrained retreat, the Turret and Attacker cooperate to
minimize the cost in (3). Thus the Value function is defined
as,

VR(x(t)) = min
ω,θ

min
ψ
J = min

ω,θ,ψ
J. (5)

Similarly, the optimal controls are defined as,

u∗ = (ω∗(t), θ∗(t), ψ∗(t)) = arg min
ω(t),θ(t),ψ(t)

J. (6)

The path constraint is defined as,

g(x) = VE(x(t))− VR(x(t)) ≥ 0, ∀t ∈ [t0, tf ] , (7)

where VE is the Value function associated with the GoE.
Let L be the integrand of the cost functional and suppose an
additional state component, l(t), is appended to x where,

l̇(t) = −L, l(tf ) = 0 (8)

which represents the remaining integral cost-to-go. Then the
retreat Value function may be written,

VR(x(t)) = P +

∫ tf

t

Ldt

= P −
∫ tf

t

l̇(t) dt

= P − l(tf ) + l(t)

= P + l(t) (9)

In the case of backwards shooting, l(t) may be easily
computed, making the computation of VR(x) trivial.

Due to the path constraint, (7), it is necessary to solve the
GoE so that VE(x) may be known for every point in the
state space. An analytical solution of the GoE, however, is
not available and a numerical solution must suffice. For a
particular x, VE may be obtained by solving the associated
boundary value problem via indirect backwards shooting.
That approach, however, is infeasible for the purposes of
the present work because the path constraint will need
to be evaluated at every point along the trajectory as we
numerically integrate. Instead, indirect backward shooting is
used to fill the state space with equilibrium trajectories which
are then sampled to generate a large set of data,

D = {(di, αi, σdi , σαi , VEi(di, αi))} , (10)

where each element is a tuple comprised of the state, GoE
adjoints, and Value associated with starting in this state (for
the GoE). The GoE adjoints are used in indirect optimal
control analysis in Section III. Fig. 2 shows VE(d, α) (i.e.
the last column of D) for each of the sample points.

We compute VE(x) (and σd and σα) via a k-nearest
neighbor (kNN) search with k = 3 and take a distance
weighted average of the neighbors. The kNN search is made
viable through the usage of the efficient NearestNeighbors
package for the Julia programming language [5].

The difficulty in sampling the saddle-point equilibrium
trajectories for the GoE lies in handling the singular sur-
faces. As mentioned previously, there are three singular
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surfaces in the GoE [3]: the Turret’s Universal Surface (at
α = 0), the Turret’s Dispersal Surface (at α = π), and
the Attacker’s Dispersal Surface (ADS), which cannot be
described analytically. To produce Fig. 2, the state space
(0 ≤ α ≤ π and 1 ≤ d ≤ 100) can be divided into
5 distinct regions: 1) trajectories with αf 6= 0 above the
envelope of the ADS, 2) trajectories with αf 6= 0 below the
envelope of the ADS, 3) “direct” trajectories emanating from
the ADS, 4) “indirect” paths emanating from the ADS, and
5) trajectories in which αf = 0 (trajectories ending on the
Turret’s Universal Surface).

With all of the above definitions in place, we now formally
state the problem definition:

min
ω(t),θ(t),ψ(t)

J

s.t. φ(x(t0),x(tf )) = 0,

g(x(t)) ≥ 0 ∀t ∈ [0, tf ]

(11)

III. METHODOLOGY

A. Optimality Conditions

We begin by developing the first order optimality con-
ditions for problem (11). The trajectory constraint, g, is
transformed to a control constraint, h, by differentiating with
respect to time,

h(x) =
dg

dt
=

dVE
dt
− dl

dt

=
∂VE
∂x

ẋ + L

= σẋ + L (12)

where σ =
[
σd σα σβ

]>
are the adjoint variables as-

sociated with the GoE. When the path constraint is active,
g(x) = 0, and in order to remain on the constraint h(x) = 0
as well. Thus when transitioning from an unconstrained arc
to a constrained arc (or vice versa) h(x) must be zero; we
refer to this as the tangency condition. The Hamiltonian may
be written,

H = λẋ + µh+ L, (13)

where µ is the adjoint variable associated with the path
constraint derivative, h, and

µ(t) =

{
0 g(x(t)) > 0

> 0 g(x(t)) = 0.
(14)

Substituting (12) into (13) gives,

H = λẋ + µ(σẋ + L) + L

= (λ+ µσ) ẋ + (1 + µ)L. (15)

Note that σβ = 0 for all time [3]. The optimal adjoint
dynamics are obtained by differentiating (15) w.r.t. each
state component and substituting the state dynamics, (1), and
σβ = 0,

λ̇d = −∂H
∂d

= (λβ − λα − µσα)
1

d2
sinψ (16)

λ̇α = −∂H
∂α

= θ (1 + µ)
1

2
sinα (17)

λ̇β = −∂H
∂β

= 0. (18)

The fact that λ̇β = 0 comes from the fact that ∂ẋ
∂β = 0 and

∂L
∂β = 0 and implies that λβ(t) is constant.

The optimizing controls are obtained via Pontryagin’s
Minimum Principle.

θ∗ = arg min
θ

H

= arg min
θ

(λẋ + µσ) + (1 + µ)

[
θ

1

2
(1 + cosα) + c

]
Since µ ≥ 0, the term (1 + µ) must be positive, which
implies,

θ∗(t) = 0. (19)

It is clear that the Turret should have its rate-of-fire set to
zero for optimal constrained retreat. As a result,

λ̇α = 0. (20)

For the Turret’s optimal turn control, we have,

ω∗ = arg min
ω

H = arg min
ω

(λ+ µσ) ẋ + (1 + µ)L

= arg min
ω

(λα + µσα)

(
ω − 1

d
sinψ

)
,

which implies,

ω∗ = −ρ sign (λα + µσα) . (21)

The Attacker’s optimal heading control is given by,

ψ∗ = arg min
ψ

H = arg min
ψ

(λ+ µσ)ẋ + (1 + µ)L

= arg min
ψ

(λ+ µσ)

= arg min
ψ

(λd + µσd) cosψ

+ (λα + µσα)

(
ω − 1

d
sinψ

)
+ (λβ + µσβ)

1

d
sinψ.



Thus ψ∗ is determined by setting the vector[
cosψ∗ sinψ∗

]>
to be antiparallel to the vector[

λd+µσd
ξ

λβ−µσα
dξ

]>
:

cosψ∗ =
−λd − µσd

ξ
(22)

sinψ∗ =
−λβ + µσα

dξ
, (23)

where,

ξ =

√
(λd + µσd)

2
+

1

d2
(λβ − µσα)

2
.

In order to proceed, let µ(tf ) = 0, that is, the system is
unconstrained at final time. This is not strictly necessary,
however, it will end up being the case for the particular
parameter settings used in Section III. Because components
of the final state x(tf ) are free, the transversality condition
yields [6],

λ>(tf ) =
∂Φ

∂x(tf )
+ ν

∂φ

∂x(tf )

= 0 + ν
[
− yR
d(tf )2

0 − cosβ
]

and thus,

λd(tf ) = −ν yR
d(tf )2

(24)

λα(tf ) = 0 (25)
λβ(tf ) = −ν cosβ. (26)

The cosine of the optimal terminal Attacker heading is ob-
tained by substituting (24) and (26) into (22) with µ(tf ) = 0

cosψ∗(tf ) =
νyR/d(tf )2√

ν2
y2R

d(tf )2
+ 1

d(tf )2
ν2 cosβ(tf )2

∝ yR sign(ν)

∝ − sign(ν).

The last expression is due to the fact that yR < 0. If ν > 0,
we would have,

ḋ(tf ) = cosψ(tf ) ∝ − sign(ν) = −1, (27)

which states that distance at final time is decreasing, but for
optimal constrained retreat, as long as the Turret is not placed
directly on the retreat surface, the distance at final time must
be increasing. Therefore, it must be the case that ν < 0. Note,
also, that because θ∗ = 0 we have L = c. With knowledge
of the sign of ν, the cosine of the optimal Attacker’s heading
angle at final time can be further simplified,

cosψ∗(tf ) =
sign(ν)yR/d(tf )2√
y2R

d(tf )4
+ 1

d(tf )2
cosβ(tf )2

=
−yR

d(tf )
√

y2R
d(tf )2

+ cosβ(tf )2
.

Define,

χ =

√
y2R

d(tf )2
+ cosβ(tf )2.

Then the optimal terminal Attacker heading angle can be
written,

cosψ∗(tf ) =
−yR
d(tf )χ

, sinψ∗(tf ) =
− cosβ(tf )

χ
. (28)

Based on the necessary conditions for optimality [6], the
Hamiltonian at final time is given by

H∗(tf ) = − ∂Φ

∂tf
− ν ∂φ

∂tf
= 0 (29)

Substituting (1) and (24)–(26) into the Hamiltonian, (13), at
final time gives

H(tf ) = − ν yR
d(tf )2

cosψ(tf )

− ν cosβ(tf )
1

d(tf )
sinψ(tf ) + L

(30)

Substituting in (28) and (29) with µ = 0 and L = c into (30)
yields

H∗(tf ) = 0 = ν
yR

d(tf )2
· yR
χd(tf )

+ ν cosβ(tf )
1

d(tf )
· cosβ(tf )

χ
+ c. (31)

Solving for ν:

ν =
−cχ

y2R
d(tf )3

+
cos2 β(tf )
d(tf )

. (32)

Because the retreat surface is a straight line in the (x, y)-
plane, selecting either d(tf ) or β(tf ) determines the other.
Therefore, the ν may be computed readily given a choice in
one of these variables, and thus the terminal adjoint values,
λ(tf ), may be computed as well.

In order to compute µ when the path constraint is active
(i.e. g(x) = 0), the optimal state dynamics ẋ∗ (found by
substituting in the optimal adjoint variables and optimal
controls) may be substituted into (12), which can be then
solved for the µ in which h(x) = 0. Alternatively, consider
that in order to keep on the constraint h(x) = 0 and similarly
ḣ(x) = 0:

ḣ =
∂h

∂x
ẋ +

∂h

∂λ
λ̇+

∂h

∂µ
µ̇ = 0

Also, when the trajectory enters or exits a constrained arc
µ = 0. Thus we can append µ to x over the constrained
portion of the trajectory with µ(t1) = 0 and,

µ̇ =
−∂h∂x ẋ−

∂h
∂λ λ̇

∂h
∂µ

,

where t1 is the time at which the trajectory enters a con-
strained arc (in backwards time). Let t2 be the time (in back-
wards time) at which the trajectory leaves the constrained arc
and enters an unconstrained arc. In order for the tangency
condition to be met, we have h(x(t2)) = 0. As a result,



the adjoint variables are subject to an additional internal
boundary condition [2], [6],

λ>(t−2 ) = λ>(t+2 ) + π
∂h

∂x
, (33)

where π is an additional adjoint variable.
Generally, one would use (33) to solve for π by substitut-

ing into the Hamiltonian, (13), evaluated at t = t−2 . However,
computing ∂h

∂x is nontrivial as it is subject to the numerical
inaccuracies introduced by sampling σ (the GoE adjoints).
We take a different approach which avoids the computation
of ∂h

∂x . Since ẋ, σd, and σα do not depend on β, ∂h
∂β = 0.

Thus, from (33), we have λβ(t−2 ) = λβ(t+2 ) and are left with
two unknowns: λd(t−2 ) and λα(t−2 ). At t = t−2 we have that
h
(
x(t−2 )

)
= 0 due to the tangency condition [6]. It is also

the case that h
(
x(t+2 )

)
= 0 since the system is constrained

after t2. Expanding (12) yields,

h(x) = σd cosψ∗ + σα

(
ω∗ − 1

d
sinψ∗

)
+ c, (34)

since σβ = 0. The quantities σd and σα are continuous at
t2 and c is constant, thus, from (34) it must be true that
ψ∗(t−2 ) = ψ∗(t+2 ). Eqs. (22) and (23) can be manipulated to
solve for λd(t−2 ), noting that µ(t−2 ) = 0

λd(t
−
2 ) =

λβ(t−2 )
(
λd(t

+
2 ) + µ(t+2 )σd

)(
λβ(t+2 )− µ(t+2 )σα

) . (35)

Because the dynamics, (1), are autonomous and H(tf ) =
0 the Hamiltonian must be zero at all times including at time
t−2 . Evaluating (13) at t−2 and substituting the value of (35)
in along with µ = 0 gives

H∗(t−2 ) = 0 = λẋ + µh+ L

= λd(t
−
2 )ḋ(t−2 ) + λα(t−2 )α̇(t−2 ) + λβ β̇(t−2 ) + 0 + c

= λd(t
−
2 ) cosψ∗ + λα(t−2 )

(
ω∗ − 1

d
sinψ∗

)
+ λβ(t−2 )

1

d
sinψ∗ + c.

(36)
Substituting in (22) and (23), rearranging, and solving for
λα(t−2 ) gives

λα(t−2 ) =

√
λd(t

−
2 )2 + 1

d2λβ(t−2 )2 − c

ω∗ +
λβ
d2ξ

(37)

Note that ω∗ depends on the sign of λα (c.f. (21)), so its sign
may be assumed a priori and then (37) must be checked for
consistency.

B. Boundary Value Problem

For backwards shooting, the Boundary Value Problem
(BVP) consists of choosing a β(tf ) (which also determines
λβ , d(tf ), and λd(tf )), a value for tf , and a value for
α(tf ) and then integrating backwards in time from tf to
t0. At t0 the state values may be substituted into the first
three components of φ in (2) to yield a residual (the fourth

component is 0 by construction/selection of the terminal
state). Formally, we have,

β∗f , α
∗
f , t
∗
f = arg min

βf ,αf ,tf

‖φ‖

s.t. g(x(t)) ≥ 0 ∀t ∈ [t0, tf ] ,

f (x,u, t) = ẋ,

Eqs. (17)–(18), (19), (21), (22), (23).

(38)

In practice, dealing with the path constraint forces one to
assume a sequence of arcs, e.g., UCU , where U denotes
an unconstrained arc and C denotes a constrained arc (e.g.,
see [7]). Then, the times at which the system switches from
an arc of one type to another must be solved for as well. Due
to the similarity of this instantiation of constrained optimal
retreat to that of the example in [2], let us assume that
UCU is indeed the proper sequence to consider, and that the
boundary conditions at t = 0 are such that the path constraint
will indeed be activated. That is, the trajectory will begin
unconstrained, transition into a constrained arc, and finally
end with another unconstrained arc. In backwards time, let
t1 be the time instant of the first switch, from U to C, and
let t2 be the time instant of the second switch, from C to
U . Note, also, that in order to transition from U to C, it
must also be the case that h(x(t1)) = 0 (i.e., the tangency
condition must be satisfied). Then the BVP in (38) may be
reposed as

β∗f , α
∗
f , t
∗
f , t
∗
1,x
∗
1, t
∗
2 = arg min

βf ,αf ,tf ,t1,x1,t2

‖φ‖

s.t. t2 ≤ t1,
g(x(t1)) = 0,

h(x(t1)) = 0,

f (x,u, t) = ẋ,

Eqs. (17)–(18), (19), (21), (22), (23).

(39)

At t1, when the constraint first becomes active we proceed
backwards in time, using the constrained version of the
optimal state, adjoint, and control dynamics wherein µ 6= 0.
Then, at t2, the jump condition (33) is used to update λd
and λα and then the integration proceeds with µ = 0.The
satisfaction of g(x(t)) = 0, ∀t ∈ [0, tf ] , t 6= t1 is
guaranteed by way of the optimality conditions derived in
this section. In terms of the implementation, we employ a
multiple shooting scheme [8] wherein the first shot comprises
the first U arc (in backwards time) from tf to t1 and the
second shot comprises the remaining C and U arcs. Thus the
BVP in (39) is augmented to include the stitching constraints
at t1.

C. Turret Turn Control

If the path constraint does not become active, the trajectory
is comprised of a single U arc. Consider the case where the
constraint becomes active at some point along the trajectory
and later becomes inactive; this corresponds to the UCU
sequence of arcs.
Case 1. (Terminal unconstrained arc, t ∈ [t1, tf ].) This case
corresponds to the final U arc in the UCU sequence, or



the singular U arc in a completely unconstrained trajectory.
Here, µ = 0, and λα = 0 due to (17) and (25). According
to (21) the optimal Turret control, ω∗ is undefined. Once
the trajectory is onthe fina unconstrained arc, the Turret’s
control has no bearing on the outcome. In this time interval,
any ωu ∈ [−ρ, ρ] is trivially optimal [2]. As a convention, let
us adopt ωu = −ρ sign (σα) in this case, which corresponds
to the GoE control [3].

Case 2. (Constrained arc, t ∈ [t2, t1).) This case corresponds
to the C arc wherein the path constraint is active. Here,
µ 6= 0, since µ(t1) = 0 and µ > 0 when the constraint
is active. As in the previous case, λα = 0. Therefore, ω∗

is generally well defined according to (21) except in the
following (sub)cases.

Case 2.1. (Turret locked on, α = 0.) If α = 0, the Turret’s
gaze is lined up exactly with the Attacker’s position. This
configuration corresponds to the Turret’s Universal Surface
wherein the GoE adjoint σα = 0 [3]. Since λα = σα = 0,
the Turret’s optimal control is undefined. In this case, ω∗ is
given by (41) (see Proposition 1).

Case 2.2. (Turret looking away, α = π.) If α = π, the Turret
is looking directly away from the Attacker’s position. This
configuration corresponds to the Turret’s Dispersal Surface
wherein the GoE adjoint σα is undefined [3]. Thus, the
Turret’s optimal control, ω∗ is undefined as well. In the GoE,
the Turret has the authority to choose to turn either clockwise
or counterclockwise to remain on an optimal (equilibrium)
trajectory. Here, however, the choices are not equivalent
because the Attacker’s heading control is different than in
the GoE. In this case, we propose setting ω to

ωDS =

{
ρ if cosβ ≥ 0,

−ρ otherwise,
(40)

which states that if the Attacker is to the right of the Turret,
the Turret should turn counterclockwise at full rate. In this
configuration, turning counterclockwise results in a larger
α̇, bringing the Attacker closer to the Turret’s view for the
remainder of the constrained arc than if the Turret had turned
clockwise (see, e.g., Fig. 1).

Case 3. (Initial unconstrained arc, t ∈ [t0, t2].) This case
corresponds to the initial U arc in the UCU sequence. Here
λα 6= 0 in general, due to (37). Since µ = 0 when the
constraint is inactive ω∗ is well-defined. Moreover, because
λ̇α = 0, the Turret always turns in one particular direction
during this part of the trajectory.

Proposition 1. When the constraint is active (g(x) = 0) and
α = 0, the Turret’s optimal control is given by

ωUS = − sign(λβ) ·min

∣∣∣∣∣∣ λβ

d2
√

(λd + µσd)2 + 1
d2λ

2
β

∣∣∣∣∣∣ , ρ


(41)

Proof. In the GoE, the Turret’s singular control along the
Universal Surface is ω = 0, which is the control associated
with keeping α = σα = 0. However, in the optimal constraint

retreat scenario, a different singular control may be required
to keep α = 0. Note that σα = 0 on the Universal Surface.
Thus we have,

α̇ = ω − 1

d
sinψ

= ω +
λβ − µσα

d2
√

(λd + µσd)2 + 1
d2 (λβ − µσα)2

= ω +
λβ

d2
√

(λd + µσd)2 + 1
d2λ

2
β

,

and thus to keep α = 0 the Turret should select ω such that
α̇ = 0. However, it is entirely possible that the Turret does
not have enough control authority to keep α̇ = 0 and thus
control saturation must be considered – hence the min with
ρ in (41).

Suppose that the Turret were to disregard (41) in the case
where the first argument of the min is less than ρ. The
Turret’s gaze would actually turn past the Attacker thereby
making α 6= 0 and σα 6= 0 and the non-singular turn control,
(21), would come into play. Eq. (21) would dictate that the
Turret reverse direction in order to drive α → 0, and the
dilemma would begin again. Thus the Turret’s turn control
would chatter/modulate in such a way as to emulate the
behavior captured in (41).

IV. SOLUTIONS AND RESULTS

The results in this section pertain to the following initial
conditions and an assumed terminal Turret look-angle

x>0 =
[
20.61 −0.2450 1.816

]
, αf = −0.6736.

(42)
These values correspond to the Attacker beginning at
(−5, 20) in the xy-plane and the Turret looking along the
y-axis, initially. In order to ensure feasible transition from
U to C we perform a sweep of βf for the assumed αf . The
trajectories in the sweep are integrated starting at t = tf
and proceed (backwards) until the first time at which either
g(x) = 0 or d(t) sinβ(t) = 20.

The purpose of the sweep is to find a value for βf which,
when integrated until g(x) = 0 results in the tangency
condition to be satisfied: h(x) = 0. The βf associated with
this point is then used as an initial guess for a Nonlinear
Program (NLP) to fine-tune βf to drive h(x)→ 0 when the
constraint becomes active (g(x) = 0). The solution of the
NLP also yields a guess for t1, d1, α1, β1, and λd1 . A guess
for t2 (or ∆t = t1 − t2, ∆t > 0) is the last piece needed to
specify a guess for the BVP, (39).

Figure 3 shows the result of the BVP solution procedure.
The red portion of the Attacker trajectory indicates where
the path constraint is active. The Turret’s initial look angle
is shown by the black arrow; the first blue arrow coun-
terclockwise is the Turret’s look angle when the constraint
becomes active; the red arrow is the look angle when the
trajectory leaves the constraint; the last blue arrow indicates
the final Turret look angle. The open black circle indicates
the initial boundary conditions at (x, y) = (−5, 20). Note
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Fig. 3. Indirect backwards multiple shooting solution trajectory.

that the Turret is constantly turning counterclockwise in this
case. Incidentally, the best trajectory found by the NLP cor-
responds to the initial guess. The reasons for this may be that
the solver was not allowed to run long enough, the integrator
was encumbered with too many callbacks (with too high of
precision), the solver had trouble finding or moving to x(t2)
that satisfy g (x(t1)) = 0 and h (x(t1)) = 0, or the solver
algorithm (constrained optimization by linear approximation,
or COBYLA) has difficulties with this particular problem.

Figure 4 shows the state, adjoint, and control trajectories
associated with the indirect solution. Figure 5 compares
the Value of Engagement and Value of Retreat along the
trajectory; g(x) is the difference between the upper and
lower curves, and the curves are coincident along the red
constrained arc. The validity of the trajectory is guaranteed
by construction: it satisfies all of the necessary conditions for
optimality in (39) and, from Fig. 5, we see that VE ≥ VR
along the entire trajectory. In particular, we’ve shown the
existence of and computed optimal retreat control strategies,
ψ∗(t;x) and ω∗(t;x) which is sufficient to state this is a
valid solution according to [2, Definition 1 & Theorem 1].

V. CONCLUSION

In this paper, we have considered an engage or retreat
scenario as applied to a mobile Attacker against a stationary
Turret with bounded turn rate. Since the solution of the Game
of Engagement is known, we focused on solving the Optimal
Constrained Retreat problem. The path constraint imposed by
the Game of Engagement makes the Optimal Constrained
Retreat problem both interesting and challenging. We de-
veloped the first-order necessary conditions for optimality
which yielded a system of differential equations describing
the optimal dynamics. Then, we specified a general Boundary
Value Problem with known initial conditions and solved it
for a particular point in the state space using backwards
(multiple) shooting.

There are still some difficulties in applying the optimality
conditions to find an optimal trajectory, in general. The three
singular surfaces that appear in the Game of Engagement
impute some of their complexities and subtleties onto the
Optimal Constrained Retreat, particularly when the constraint
is active. Specification of the Boundary Value Problem relied
on having to assume a sequence of constrained and uncon-
strained arcs. Some care was taken to choose parameters and
initial boundary conditions to yield a trajectory in which the
path constraint would become active. Lastly, the process of
computing an initial guess to satisfy the tangency condition
when the constraint becomes active is nontrivial. Addressing
these difficulties more thoroughly is left to future work.
Additionally, we seek to compute the barrier surface which
partitions the state space into a region where engagement is
optimal and a region where retreat is optimal.
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